

AT32

Receiving Card

Specifications

Change History

Document Version	Release Date	Description
V1.2.2	2022-12-27	 Updated the description of the maximum resolution. Updated the dimensions diagram. Updated the packing box dimensions. Deleted the LVDS transmission.
V1.2.1	2022-08-31	Updated the input voltage.
V1.2.0	2022-04-24	Updated the top-view diagram.
V1.1.2	2022-03-26	 Added the certifications description. Added the dimensions diagram description. Updated some feature descriptions. Updated the pins section.
V1.1.1	2021-02-06	Updated the packing information.
V1.1.0	2020-09-11	 Optimized the feature description. Optimized the dimensions diagram. Updated the maximum loading capacity.
V1.0.1	2020-04-09	Updated the firmware version.Updated the indicator description.
V1.0.0	2020-01-02	First release

Introduction

The AT32 is a general small receiving card developed by Xi'an NovaStar Tech Co., Ltd. (hereinafter referred to as NovaStar). For PWM driver ICs, a single AT32 supports resolutions up to 512×384@60Hz. For common driver ICs, a single AT32 supports resolutions up to 384×384@60Hz. Supporting various functions such as pixel level brightness and chroma calibration, quick adjustment of dark or bright lines, 3D, individual gamma adjustment for RGB, and image rotation in 90° increments, the AT32 can significantly improve the display effect and user experience.

The AT32 uses high-density connectors for communication to limit the effects of dust and vibration, resulting in high stability. It supports up to 32 groups of parallel RGB data or 64 groups of serial data (expandable to 128 groups of serial data). Its reserved pins allow for custom functions of users. Thanks to its EMC Class B compliant hardware design, the AT32 has improved electromagnetic compatibility and is suitable for various on-site setups.

Certifications

RoHS, EMC Class B

If the product does not have the relevant certifications required by the countries or regions where it is to be sold, please contact NovaStar to confirm or address the problem. Otherwise, the customer shall be responsible for the legal risks caused or NovaStar has the right to claim compensation.

Features

Improvements to Display Effect

- Pixel level brightness and chroma calibration Work with NovaStar's high-precision calibration system to calibrate the brightness and chroma of each pixel, effectively removing brightness differences and chroma differences, and enabling high brightness consistency and chroma consistency.
- Quick adjustment of dark or bright lines The dark or bright lines caused by splicing of modules and cabinets can be adjusted to improve the visual experience. The adjustment is easy and takes effect immediately.

In NovaLCT V5.2.0 or later, the adjustment can be made without using or changing video source.

Improvements to Maintainability

- Smart module (dedicated firmware required) Working with the smart module, the receiving card supports module ID management, storage of calibration coefficients and module parameters, monitoring of module temperature, voltage and flat cable communication status, LED error detection, and recording of the module run time.
- Automatic module calibration
 After a new module with flash memory is
 installed to replace the old one, the calibration
 coefficients stored in the flash memory can be
 automatically uploaded to the receiving card
 when it is powered on.
- Quick uploading of calibration coefficients The calibration coefficients can be quickly uploaded to the receiving card, improving efficiency greatly.
- Module Flash management For modules with flash memory, the information stored in the memory can be managed. The calibration coefficients and module ID can be stored and read back.
- One click to apply calibration coefficients stored in module Flash
 For modules with flash memory, if the Ethernet cable is disconnected, users can hold down the self-test button on the cabinet to upload the calibration coefficients in the flash memory of the module to the receiving card.
- Mapping function The cabinets display the receiving card number and Ethernet port information, allowing users to

- 3D function Working with the sending card that supports 3D function, the receiving card supports 3D image output.
- Individual gamma adjustment for RGB Working with NovaLCT (V5.2.0 or later) and the sending card that supports this function, the receiving card supports individual adjustment of red gamma, green gamma and blue gamma, which can effectively control image nonuniformity under low grayscale and white balance offset, allowing for a more realistic image.
- Image rotation in 90° increments
 The display image can be set to rotate in multiples of 90° (0°/90°/180°/270°).

easily obtain the locations and connection topology of receiving cards.

- Setting of a pre-stored image in receiving card The image displayed on the screen during startup, or displayed when the Ethernet cable is disconnected or there is no video signal can be customized.
- Temperature and voltage monitoring
 The temperature and voltage of the receiving card can be monitored without using peripherals.
- Cabinet LCD The LCD module of the cabinet can display the temperature, voltage, single run time and total run time of the receiving card.
- Bit error detection
 - The Ethernet port communication quality of the receiving card can be monitored and the number of erroneous packets can be recorded to help troubleshoot network communication problems.

NovaLCT V5.2.0 or later is required.

- Status detection of dual power supplies When two power supplies are connected, their working status can be detected by the receiving card.
- Firmware program readback The receiving card firmware program can be read back and saved to the local computer.

NovaLCT V5.2.0 or later is required.

 Configuration parameter readback
 The receiving card configuration parameters can be read back and saved to the local computer.

The receiving card and sending card form a loop

via the main and backup line connections. If a

Two copies of firmware program are stored in the application area of the receiving card at the

factory to avoid the problem that the receiving

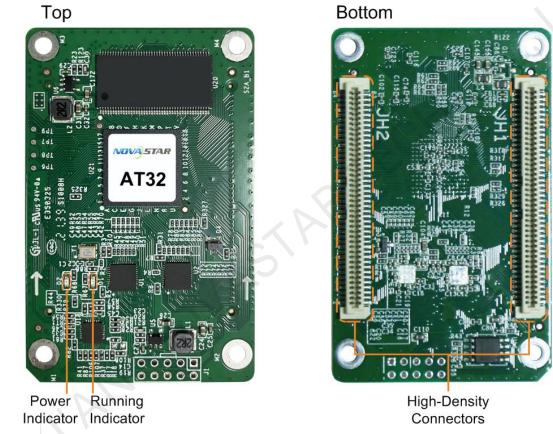
card may get stuck abnormally during program

can still display the image normally.

Dual program backup

fault occurs at a location of the lines, the screen

Loop backup


update.

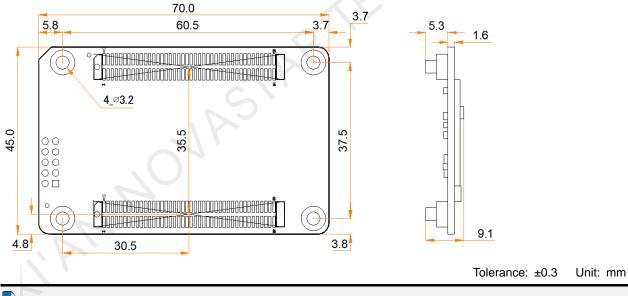
Improvements to Reliability

Dual card backup and status monitoring In an application with requirements for high reliability, two receiving cards can be mounted onto a single hub board for backup. If the main receiving card fails, the backup card can serve immediately to ensure uninterrupted operation of the display.

The working status of the main and backup receiving cards can be monitored in NovaLCT V5.2.0 or later.

Appearance

All product pictures shown in this document are for illustration purpose only. Actual product may vary.

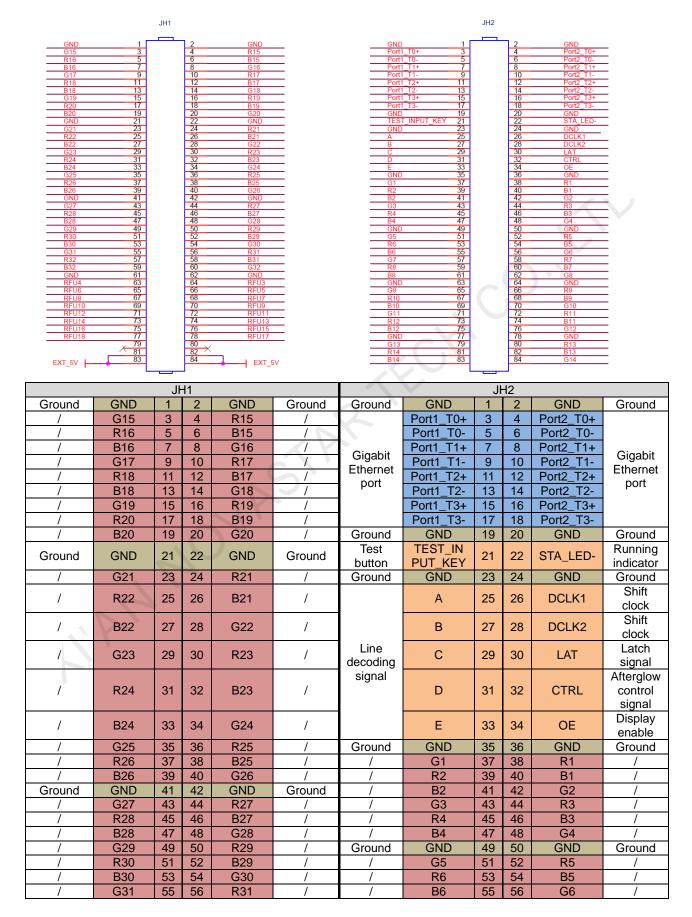


Indicators

Indicator	Color	Status	Description
Running indicator	Green	Flashing once every 1s	The receiving card is functioning normally. Ethernet cable connection is normal, and video source input is available.
		Flashing once every 3s	Ethernet cable connection is abnormal.
		Flashing 3 times every 0.5s	Ethernet cable connection is normal, but no video source input is available.
		Flashing once every 0.2s	The receiving card failed to load the program in the application area and is now using the backup program.
		Flashing 8 times every 0.5s	A redundancy switchover occurred on the Ethernet port and the loop backup has taken effect.
Power indicator	Red	Always on	The power supply is normal.

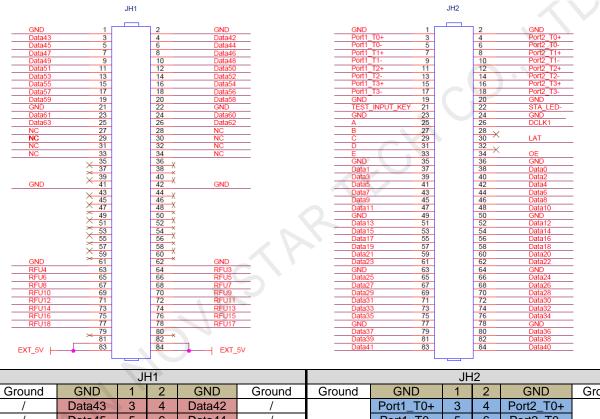
Dimensions

The board thickness is not greater than 2.0 mm, and the total thickness (board thickness + thickness of components on the top and bottom sides) is not greater than 9.5 mm. Ground connection (GND) is enabled for mounting holes.


Note

The distance between outer surfaces of the AT32 and HUB boards after their high-density connectors fit together is 8.0 mm. An 8-mm copper pillar is recommended.

To make molds or trepan mounting holes, please contact NovaStar for a higher-precision structural drawing.


Pins

32 Groups of Parallel RGB Data

JH1								JI	H2		
/	R32	57	58	B31	/	/	G7	57	58	R7	/
/	B32	59	60	G32	/	/	R8	59	60	B7	/
Ground	GND	61	62	GND	Ground	/	B8	61	62	G8	/
	RFU4	63	64	RFU3	Reserved	Ground	GND	63	64	GND	Ground
	RFU6	65	66	RFU5		/	G9	65	66	R9	/
	RFU8	67	68	RFU7		/	R10	67	68	B9	/
Reserved	RFU10	69	70	RFU9		/	B10	69	70	G10	/
Reserved	RFU12	71	72	RFU11		/	G11	71	72	R11	/
	RFU14	73	74	RFU13		/	R12	73	74	B11	/
	RFU16	75	76	RFU15		/	B12	75	76	G12	/
	RFU18	77	78	RFU17		Ground	GND	77	78	GND	Ground
/	NC	79	80	NC	/	/	G13	79	80	R13	/
5V	EXT_5V	81	82	EXT_5V	5V	/	R14	81	82	B13	/
50	EXT_5V	83	84	EXT_5V		/	B14	83	84	G14	/

64 Groups of Serial Data

Ground	GND	1	2	GND	Ground	Ground	GND	1	2	GND	Ground
/	Data43	3	4	Data42	/		Port1_T0+	3	4	Port2_T0+	Gigabit Ethernet port
/	Data45	5	6	Data44	/		Port1_T0-	5	6	Port2_T0-	
1	Data47	7	8	Data46	/	Gigabit	Port1_T1+	7	8	Port2_T1+	
1	Data49	9	10	Data48	/	Ethernet	Port1_T1-	9	10	Port2_T1-	
1	Data51	11	12	Data50	/	port	Port1_T2+	11	12	Port2_T2+	
/	Data53	13	14	Data52	/	pon	Port1_T2-	13	14	Port2_T2-	
1	Data55	15	16	Data54	/		Port1_T3+	15	16	Port2_T3+	
/	Data57	17	18	Data56	/		Port1_T3-	17	18	Port2_T3-	
/	Data59	19	20	Data58	/	Ground	GND	19	20	GND	Ground
Ground	GND	SND 21	22	GND	Ground	Test	TEST_INP	21	22	STA_LED-	Running
Croana	OND		~~	OND	Ground	button	UT_KEY				indicator
/	Data61	23	24	Data60	/	Ground	GND	23	24	GND	Ground
/	Data63	25	26	Data62	/		А	25	26	DCLK1	Shift clock
/	NC	27	28	NC	/		В	27	28	NC	/
1	NIC	20	20	NO	1	Line	0	20	20		Latch
/	NC	29	30	NC	/	decoding	С	29	30	LAT	signal
/	NC	31	32	NC	/	signal	D	31	32	NC	/
/	NC	33	34	NC	/		Е	33	34	OE	Display
/	NC	- 33	54	NC	/		Ľ	55	53 54 (enable
/	NC	35	36	NC	/	Ground	GND	35	36	GND	Ground

JH1						JH2					
/	NC	37	38	NC	/	/	Data1	37	38	Data0	/
/	NC	39	40	NC	/	/	Data3	39	40	Data2	/
Ground	GND	41	42	GND	Ground	/	Data5	41	42	Data4	/
/	NC	43	44	NC	/	/	Data7	43	44	Data6	/
/	NC	45	46	NC	/	/	Data9	45	46	Data8	/
/	NC	47	48	NC	/	/	Data11	47	48	Data10	/
/	NC	49	50	NC	/	Ground	GND	49	50	GND	Ground
/	NC	51	52	NC	/	/	Data13	51	52	Data12	/
/	NC	53	54	NC	/	/	Data15	53	54	Data14	/
/	NC	55	56	NC	/	/	Data17	55	56	Data16	/
/	NC	57	58	NC	/	/	Data19	57	58	Data18	/
/	NC	59	60	NC	/	/	Data21	59	60	Data20	/
Ground	GND	61	62	GND	Ground	/	Data23	61	62	Data22	/
	RFU4	63	64	RFU3		Ground	GND	63	64	GND	Ground
	RFU6	65	66	RFU5		/	Data25	65	66	Data24	/
	RFU8	67	68	RFU7		/	Data27	67	68	Data26	/
Reserved	RFU10	69	70	RFU9	Reserved	/	Data29	69	70	Data28	_/
Reserved	RFU12	71	72	RFU11	Reserveu	/	Data31	71	72	Data30	1
	RFU14	73	74	RFU13		/	Data33	73	74	Data32	/
	RFU16	75	76	RFU15		/	Data35	75	76	Data34	/
	RFU18	77	78	RFU17		Ground	GND	77	78	GND	Ground
/	NC	79	80	NC	/	/	Data37	79	80	Data36	/
5V	EXT_5V	81	82	EXT_5V	5V	/	Data39	81	82	Data38	/
50	EXT_5V	83	84	EXT_5V	5.	/	Data41	83	84	Data40	/

Reference Design for Extended Functions

	Description of Pins for Extended Functions								
Pin	Recommended Module Flash Pin	Recommended Smart Module Pin	Description						
RFU4	HUB_SPI_CLK	(Reserved)	Clock signal of serial pin						
RFU6	HUB_SPI_CS	(Reserved)	CS signal of serial pin						
RFU8	HUB_SPI_MOSI		Module Flash data storage input						
RFUO	/	HUB_UART_TX	Smart module TX signal						
RFU10	HUB_SPI_MISO	/	Module Flash data storage output						
REUIU	/	HUB_UART_RX	Smart module RX signal						
RFU3	HUB_C	CODE0	Module Flash BUS control pin						
RFU5	HUB_C	CODE1							
RFU7	HUB_C	CODE2	Module Flash BUS control pin						
RFU9	HUB_C	CODE3							
RFU14	POWE	R_STA1	Dual newer auguly detection signal						
RFU16	POWER	R_STA2	Dual power supply detection signal						
RFU15	MS_I	DATA	Dual card backup connection signal						
RFU17	MS	_ID	Dual card backup identifier signal						

Note

The RFU8 and RFU10 are signal multiplex extension pins. Only one pin from either the Recommended Smart Module Pin or the Recommended Module Flash Pin can be selected at the same time.

Specifications

Maximum Resolution	512×384@60Hz (PWM driver ICs) 384×384@60Hz (Common driver ICs)					
Electrical Specifications	Input voltage	DC 3.8 V to 5.5 V				
	Rated current	0.6 A				
	Rated power consumption	3.0 W				
Operating Environment	Temperature	-20°C to +70°C				
	Humidity	10% RH to 90% RH, non-condensing				
Storage Environment	Temperature	-25°C to +125°C				
	Humidity	0% RH to 95% RH, non-condensing				
Physical Specifications	Dimensions	70.0 mm × 45.0 mm × 9.1 mm				
	Net weight	16.5 g Note: It is the weight of a single receiving card only.				
Packing Information	Packing specifications	Each receiving card is packaged in a blister pack. Each packing box contains 80 receiving cards.				
	Packing box dimensions	392.0 mm × 200.0 mm × 123.0 mm				

The amount of current and power consumption may vary depending on various factors such as product settings, usage, and environment.

Copyright © 2022 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark

NOVASTAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement

Thank you for choosing NovaStar's product. This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via the contact information given in this document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website www.novastar.tech

Technical support support@novastar.tech